Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vector algebra in the analysis of genome-wide expression data.

Identifieur interne : 001956 ( Main/Exploration ); précédent : 001955; suivant : 001957

Vector algebra in the analysis of genome-wide expression data.

Auteurs : Finny G. Kuruvilla [États-Unis] ; Peter J. Park ; Stuart L. Schreiber

Source :

RBID : pubmed:11897023

Descripteurs français

English descriptors

Abstract

BACKGROUND

Data from thousands of transcription-profiling experiments in organisms ranging from yeast to humans are now publicly available. How best to analyze these data remains an important challenge. A variety of tools have been used for this purpose, including hierarchical clustering, self-organizing maps and principal components analysis. In particular, concepts from vector algebra have proven useful in the study of genome-wide expression data.

RESULTS

Here we present a framework based on vector algebra for the analysis of transcription profiles that is geometrically intuitive and computationally efficient. Concepts in vector algebra such as angles, magnitudes, subspaces, singular value decomposition, bases and projections have natural and powerful interpretations in the analysis of microarray data. Angles in particular offer a rigorous method of defining 'similarity' and are useful in evaluating the claims of a microarray-based study. We present a sample analysis of cells treated with rapamycin, an immunosuppressant whose effects have been extensively studied with microarrays. In addition, the algebraic concept of a basis for a space affords the opportunity to simplify data analysis and uncover a limited number of expression vectors to span the transcriptional range of cell behavior.

CONCLUSIONS

This framework represents a compact, powerful and scalable construction for analysis and computation. As the amount of microarray data in the public domain grows, these vector-based methods are relevant in determining statistical significance. These approaches are also well suited to extract biologically meaningful information in the analysis of signaling networks.


DOI: 10.1186/gb-2002-3-3-research0011
PubMed: 11897023
PubMed Central: PMC88809


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Vector algebra in the analysis of genome-wide expression data.</title>
<author>
<name sortKey="Kuruvilla, Finny G" sort="Kuruvilla, Finny G" uniqKey="Kuruvilla F" first="Finny G" last="Kuruvilla">Finny G. Kuruvilla</name>
<affiliation wicri:level="4">
<nlm:affiliation>Howard Hughes Medical Institute, Bauer Center for Genomics Research, Department of Chemistry, Harvard University, Cambridge, MA 02138, USA. sls@slsiris.harvard.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute, Bauer Center for Genomics Research, Department of Chemistry, Harvard University, Cambridge, MA 02138</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Park, Peter J" sort="Park, Peter J" uniqKey="Park P" first="Peter J" last="Park">Peter J. Park</name>
</author>
<author>
<name sortKey="Schreiber, Stuart L" sort="Schreiber, Stuart L" uniqKey="Schreiber S" first="Stuart L" last="Schreiber">Stuart L. Schreiber</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:11897023</idno>
<idno type="pmid">11897023</idno>
<idno type="pmc">PMC88809</idno>
<idno type="doi">10.1186/gb-2002-3-3-research0011</idno>
<idno type="wicri:Area/Main/Corpus">001988</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001988</idno>
<idno type="wicri:Area/Main/Curation">001988</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001988</idno>
<idno type="wicri:Area/Main/Exploration">001988</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Vector algebra in the analysis of genome-wide expression data.</title>
<author>
<name sortKey="Kuruvilla, Finny G" sort="Kuruvilla, Finny G" uniqKey="Kuruvilla F" first="Finny G" last="Kuruvilla">Finny G. Kuruvilla</name>
<affiliation wicri:level="4">
<nlm:affiliation>Howard Hughes Medical Institute, Bauer Center for Genomics Research, Department of Chemistry, Harvard University, Cambridge, MA 02138, USA. sls@slsiris.harvard.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute, Bauer Center for Genomics Research, Department of Chemistry, Harvard University, Cambridge, MA 02138</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Park, Peter J" sort="Park, Peter J" uniqKey="Park P" first="Peter J" last="Park">Peter J. Park</name>
</author>
<author>
<name sortKey="Schreiber, Stuart L" sort="Schreiber, Stuart L" uniqKey="Schreiber S" first="Stuart L" last="Schreiber">Stuart L. Schreiber</name>
</author>
</analytic>
<series>
<title level="j">Genome biology</title>
<idno type="eISSN">1474-760X</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cluster Analysis (MeSH)</term>
<term>Computational Biology (methods)</term>
<term>Computational Biology (statistics & numerical data)</term>
<term>Gene Expression Profiling (methods)</term>
<term>Gene Expression Profiling (statistics & numerical data)</term>
<term>Genes, Fungal (genetics)</term>
<term>Genome, Fungal (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Immunosuppressive Agents (pharmacology)</term>
<term>Mutation (genetics)</term>
<term>Oligonucleotide Array Sequence Analysis (methods)</term>
<term>Oligonucleotide Array Sequence Analysis (statistics & numerical data)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Sirolimus (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (méthodes)</term>
<term>Analyse de profil d'expression de gènes (statistiques et données numériques)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Biologie informatique (méthodes)</term>
<term>Biologie informatique (statistiques et données numériques)</term>
<term>Gènes fongiques (génétique)</term>
<term>Génome fongique (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Immunosuppresseurs (pharmacologie)</term>
<term>Mutation (génétique)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Séquençage par oligonucléotides en batterie (méthodes)</term>
<term>Séquençage par oligonucléotides en batterie (statistiques et données numériques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Immunosuppressive Agents</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Fungal</term>
<term>Mutation</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Gènes fongiques</term>
<term>Mutation</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
<term>Gene Expression Profiling</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Biologie informatique</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Immunosuppresseurs</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Computational Biology</term>
<term>Gene Expression Profiling</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" qualifier="statistiques et données numériques" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Biologie informatique</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cluster Analysis</term>
<term>Genome, Fungal</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de regroupements</term>
<term>Génome fongique</term>
<term>Humains</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Data from thousands of transcription-profiling experiments in organisms ranging from yeast to humans are now publicly available. How best to analyze these data remains an important challenge. A variety of tools have been used for this purpose, including hierarchical clustering, self-organizing maps and principal components analysis. In particular, concepts from vector algebra have proven useful in the study of genome-wide expression data.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Here we present a framework based on vector algebra for the analysis of transcription profiles that is geometrically intuitive and computationally efficient. Concepts in vector algebra such as angles, magnitudes, subspaces, singular value decomposition, bases and projections have natural and powerful interpretations in the analysis of microarray data. Angles in particular offer a rigorous method of defining 'similarity' and are useful in evaluating the claims of a microarray-based study. We present a sample analysis of cells treated with rapamycin, an immunosuppressant whose effects have been extensively studied with microarrays. In addition, the algebraic concept of a basis for a space affords the opportunity to simplify data analysis and uncover a limited number of expression vectors to span the transcriptional range of cell behavior.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This framework represents a compact, powerful and scalable construction for analysis and computation. As the amount of microarray data in the public domain grows, these vector-based methods are relevant in determining statistical significance. These approaches are also well suited to extract biologically meaningful information in the analysis of signaling networks.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11897023</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>07</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1474-760X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2002</Year>
</PubDate>
</JournalIssue>
<Title>Genome biology</Title>
<ISOAbbreviation>Genome Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Vector algebra in the analysis of genome-wide expression data.</ArticleTitle>
<Pagination>
<MedlinePgn>RESEARCH0011</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Data from thousands of transcription-profiling experiments in organisms ranging from yeast to humans are now publicly available. How best to analyze these data remains an important challenge. A variety of tools have been used for this purpose, including hierarchical clustering, self-organizing maps and principal components analysis. In particular, concepts from vector algebra have proven useful in the study of genome-wide expression data.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Here we present a framework based on vector algebra for the analysis of transcription profiles that is geometrically intuitive and computationally efficient. Concepts in vector algebra such as angles, magnitudes, subspaces, singular value decomposition, bases and projections have natural and powerful interpretations in the analysis of microarray data. Angles in particular offer a rigorous method of defining 'similarity' and are useful in evaluating the claims of a microarray-based study. We present a sample analysis of cells treated with rapamycin, an immunosuppressant whose effects have been extensively studied with microarrays. In addition, the algebraic concept of a basis for a space affords the opportunity to simplify data analysis and uncover a limited number of expression vectors to span the transcriptional range of cell behavior.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This framework represents a compact, powerful and scalable construction for analysis and computation. As the amount of microarray data in the public domain grows, these vector-based methods are relevant in determining statistical significance. These approaches are also well suited to extract biologically meaningful information in the analysis of signaling networks.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kuruvilla</LastName>
<ForeName>Finny G</ForeName>
<Initials>FG</Initials>
<AffiliationInfo>
<Affiliation>Howard Hughes Medical Institute, Bauer Center for Genomics Research, Department of Chemistry, Harvard University, Cambridge, MA 02138, USA. sls@slsiris.harvard.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Peter J</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schreiber</LastName>
<ForeName>Stuart L</ForeName>
<Initials>SL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2002</Year>
<Month>02</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol</MedlineTA>
<NlmUniqueID>100960660</NlmUniqueID>
<ISSNLinking>1474-7596</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007166">Immunosuppressive Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
<QualifierName UI="Q000706" MajorTopicYN="Y">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
<QualifierName UI="Q000706" MajorTopicYN="Y">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="Y">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007166" MajorTopicYN="N">Immunosuppressive Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
<QualifierName UI="Q000706" MajorTopicYN="Y">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2001</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2001</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2002</Year>
<Month>01</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11897023</ArticleId>
<ArticleId IdType="pmc">PMC88809</ArticleId>
<ArticleId IdType="doi">10.1186/gb-2002-3-3-research0011</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Cell. 1998 Dec;9(12):3273-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Aug 3;406(6795):532-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10952316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Opt. 1997 Oct;2(4):364-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23014960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 May;158(1):41-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11333217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Jul 7;102(1):109-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10929718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Nov 25;95(5):717-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9845373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Dec 14-28;10(24):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Aug 25;480(1):17-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10967323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Aug 17;406(6797):747-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10963602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Feb 4;287(5454):873-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10657304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pac Symp Biocomput. 2000;:455-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10902193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Feb 17;403(6771):699-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10693778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):44-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 Mar;24(3):227-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10700174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):680-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Nov;8(11):1202-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10963673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Oct 23;282(5389):699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9784122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2001;8(1):37-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11339905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Jun;17(6):520-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1998 Jul;2(1):65-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9702192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Oct 15;286(5439):531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jun 15;29(12):2549-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11410663</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Cambridge (Massachusetts)</li>
</settlement>
<orgName>
<li>Université Harvard</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Park, Peter J" sort="Park, Peter J" uniqKey="Park P" first="Peter J" last="Park">Peter J. Park</name>
<name sortKey="Schreiber, Stuart L" sort="Schreiber, Stuart L" uniqKey="Schreiber S" first="Stuart L" last="Schreiber">Stuart L. Schreiber</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Kuruvilla, Finny G" sort="Kuruvilla, Finny G" uniqKey="Kuruvilla F" first="Finny G" last="Kuruvilla">Finny G. Kuruvilla</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001956 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001956 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11897023
   |texte=   Vector algebra in the analysis of genome-wide expression data.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11897023" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020